Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta ; 255(4): 87, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35303194

RESUMO

MAIN CONCLUSION: A critical investigation into arsenic uptake and transportation, its phytotoxic effects, and defense strategies including complex signaling cascades and regulatory networks in plants. The metalloid arsenic (As) is a leading pollutant of soil and water. It easily finds its way into the food chain through plants, more precisely crops, a common diet source for humans resulting in serious health risks. Prolonged As exposure causes detrimental effects in plants and is diaphanously observed through numerous physiological, biochemical, and molecular attributes. Different inorganic and organic As species enter into the plant system via a variety of transporters e.g., phosphate transporters, aquaporins, etc. Therefore, plants tend to accumulate elevated levels of As which leads to severe phytotoxic damages including anomalies in biomolecules like protein, lipid, and DNA. To combat this, plants employ quite a few mitigation strategies such as efficient As efflux from the cell, iron plaque formation, regulation of As transporters, and intracellular chelation with an array of thiol-rich molecules such as phytochelatin, glutathione, and metallothionein followed by vacuolar compartmentalization of As through various vacuolar transporters. Moreover, the antioxidant machinery is also implicated to nullify the perilous outcomes of the metalloid. The stress ascribed by the metalloid also marks the commencement of multiple signaling cascades. This whole complicated system is indeed controlled by several transcription factors and microRNAs. This review aims to understand, in general, the plant-soil-arsenic interaction, effects of As in plants, As uptake mechanisms and its dynamics, and multifarious As detoxification mechanisms in plants. A major portion of this article is also devoted to understanding and deciphering the nexus between As stress-responsive mechanisms and its underlying complex interconnected regulatory networks.


Assuntos
Arsênio , Arsênio/metabolismo , Arsênio/toxicidade , Transporte Biológico , Produtos Agrícolas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fitoquelatinas/metabolismo
2.
Environ Sci Pollut Res Int ; 28(17): 21633-21649, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33411291

RESUMO

Population detonation and rapid industrialization are the major factors behind the reduction in cultivable land that affects crop production seriously. This situation is further being deteriorated due to the negative effects of abiotic stresses. Under such conditions, plant growth-promoting rhizobacteria (PGPR) are found to improve crop production which is essential for sustainable agriculture. This study is focused on the isolation of potent arsenic (As)-resistant PGPR from the agricultural land of West Bengal, India, and its application to reduce As translocation in rice seedlings. After screening, an As-resistant PGPR strain AS18 was identified by phenotypic characters and 16S rDNA sequence-based homology as Pantoea dispersa. This strain displayed nitrogen fixation, phosphate solubilization, 1-aminocyclopropane-1-carboxylic acid deaminase (ACCD) activity, indole-3-acetic acid (IAA) production, in addition to As (III) resistance up to 3750 µg/mL. The As removal efficiency of this strain was up to 93.12% from the culture medium as evidenced by AAS. The bioaccumulation property of AS18 strain was further validated by TEM-EDAX-XRD-XRF-FTIR studies. This strain showed significant morpho-biochemical improvements including antioxidant enzymatic activities and As-minimization in plant (rice) cells. Thus, being an As-resistant potent PGPR, AS18 strain is expected to be applied in As-spiked agricultural fields for bioremediation and phytostimulation.


Assuntos
Arsênio , Oryza , Índia , Pantoea , Plântula , Microbiologia do Solo
3.
J Appl Stat ; 48(16): 3086-3101, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35707252

RESUMO

This study proposes a semi-parametric estimation method, Box-Cox power transformation unconditional quantile regression, to estimate the impact of changes in the distribution of the explanatory variables on the unconditional quantile of the outcome variable. The proposed method consists of running a nonlinear regression of the recentered influence function (RIF) of the outcome variable on the explanatory variables. We also show the asymptotic properties of the proposed estimator and apply the estimation method to address an existing puzzle in labor economics-why the 50th/10th percentile wage gap has been falling in the USA since the late 1980s. Our results show that declining unionization can explain approximately 10% of the decline in the 50/10 wage gap in 1990-2000 and 23% in 2000-2010.

6.
Chemosphere ; 211: 407-419, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30077937

RESUMO

The biological agents have been utilized as an affordable alternative to conventional costly metal remediation technologies for last few years. The present investigation introduces arsenic (As) resistant plant growth promoting rhizobacteria (PGPR) isolated from the As-contaminated agricultural field of West Bengal, India that alleviates arsenic-induced toxicity and exhibited many plant growth promoting traits (PGP). The isolated strain designated as AS6 has identified as Bacillus aryabhattai based on phenotypic characteristics, physio-biochemical tests, MALDI-TOFMS bio-typing, FAME analysis and 16S rDNA sequence homology. The strain found to exhibit five times more resistance to arsenate than arsenite with minimum inhibitory concentrations (MIC) being 100 mM and 20 mM respectively. The result showed that accumulation of As was evidenced by SEM- EDAX, TEM-EDAX studies. The intracellular accumulation of arsenic was also confirmed as in bacterial biomass by AAS, FTIR, XRD and XRF analyses. The increased rate of As (V) reduction by this strain found to be exploited for the remediation of arsenic in the contaminated agricultural field. The strain also found to exhibit important PGP traits viz., ACC deaminase activity (2022 nmol α-ketobutyrate/mg protein/h), IAA production (166 µg/ml), N2 fixation (0.32 µgN fixed/h/mg proteins) and siderophore production (72%) etc. Positive influenced of AS6 strain on rice seedlings growth promotion under As stress was observed considering the several morphological, biochemical parameters including antioxidants activities as compared with an uninoculated set. Thus this strain might be exploited for stress amelioration and plant growth enhancement of rice cultivar under arsenic spiked agricultural soil.


Assuntos
Arsênio/química , Biodegradação Ambiental/efeitos dos fármacos , Oryza/química , Plântula/química , Poluentes do Solo/química , Solo/química
7.
3 Biotech ; 8(6): 262, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29805952

RESUMO

Myo-inositol hexakisphosphate phosphohydrolases (i.e., phytases) are known to be a very important enzyme responsible for solubilization of insoluble phosphates. In the present study, Enterobacter phytases have characterized by different phylogenetic, structural and functional parameters using some standard bio-computational tools. Results showed that majority of the Enterobacter phytases are acidic in nature as most of the isoelectric points were under 7.0. The aliphatic indices predicted for the selected proteins were below 40 indicating their thermostable nature. The average molecular weight of the proteins was 48 kDa. The lower values of GRAVY of the said proteins implied that they have better interactions with water. Secondary structure prediction revealed that alpha-helical content was highest among the other forms such as sheets, coils, etc. Moreover, the predicted 3D structure of Enterobacter phytases divulged that the proteins consisted of four monomeric polypeptide chains i.e., it was a tetrameric protein. The predicted tertiary model of E. aerogenes (A0A0M3HCJ2) was deposited in Protein Model Database (Acc. No.: PM0080561) for further utilization after a thorough quality check from QMEAN and SAVES server. Functional analysis supported their classification as histidine acid phosphatases. Besides, multiple sequence alignment revealed that "DG-DP-LG" was the most highly conserved residues within the Enterobacter phytases. Thus, the present study will be useful in selecting suitable phytase-producing microbe exclusively for using in the animal food industry as a food additive.

8.
Comput Biol Chem ; 74: 190-200, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29627694

RESUMO

Lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) catalyzes tri-, di-, and monoacyl glycerol of fat into glycerol and fatty acids. It has important roles in the digestion of lipids in living organisms and industrially as laundry detergents along with proteases. The microbial lipases are more stable, active and economically feasible compared to plant and animal sources. Hence, much attention was given to the maximum production of the enzyme from the microbial sources. The phylogenetic analysis revealed that the amino acid sequence of lipase protein and their corresponding cDNA of Pseudomonas aeruginosa clustered with Pseudomonas stutzeri among different species of Pseudomonas, while P. aeruginosa PA1 clustered with P. aeruginosa SJTD-1 among different strains of P. aeruginosa. The lipase of P. aeruginosa PA1 was a monomeric, acidic and thermostable protein having a molecular weight ranging in between 32.72 to 34.89 kDa. The protein was abundant with random coils and alpha helices in its secondary structure. The tertiary model showed 96.310 score as an overall quality factor. Hence, this in silico study gives some useful information about the lipase protein without performing crystal structure assessment by X-ray Crystallography or NMR study in wet lab experiments which could be helpful for isolation and characterization of the enzyme in vitro.


Assuntos
Lipase/química , Lipase/metabolismo , Filogenia , Pseudomonas/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , Lipase/genética , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Pseudomonas/classificação
9.
Microbiol Res ; 210: 12-25, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29625654

RESUMO

Application of heavy metal resistant plant growth promoting rhizobacteria has an important role as they help to evade metal-induced toxicity in plants on one hand and enhance plant growth on the other. The present study is therefore focused on the characterization of a cadmium resistant bacterial strain isolated from heavy metal contaminated rhizospheric soil designated as S8. This S8 strain was selected in terms of cadmium resistance and plant growth promoting traits. Moreover, it also showed resistance to lead and arsenic to a considerable extent. The selected strain S8 was identified as Klebsiella michiganensis by modern approaches of bacterial taxonomy. The plant growth promoting traits exhibited by the strain include 1-aminocyclopropane-1-carboxylic acid deaminase activity (58.33 ng α-keto butyrate/mg protein/h), Indole-3-acetic acid production (671 µg/ml), phosphate solubilization (71.98 ppm), nitrogen fixation (3.72 µg of nitrogen fixed/h/mg protein) etc. Besides, the strain also exhibited high cadmium removal efficiency (73-97%) from the medium and intracellular accumulation as well. Its efficiency to alleviate cadmium-induced toxicity was determined against a rice cultivar in terms of morphological and biochemical changes. Enhanced growth and reduced oxidative stress were detected in presence of the bacterium. On the basis of these results, it can be concluded that K. michiganensis strain S8 is cadmium accumulating plant growth promoting rhizobacterium that can be applied in cadmium contaminated agricultural soil to achieve better productivity of rice.


Assuntos
Cádmio/metabolismo , Klebsiella/fisiologia , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Desenvolvimento Vegetal , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Amilases/análise , Proteínas de Bactérias/análise , Biodegradação Ambiental , Cádmio/toxicidade , Clorofila/análise , DNA Bacteriano/genética , DNA Ribossômico/genética , Etilenos/metabolismo , Índia , Ácidos Indolacéticos/metabolismo , Klebsiella/classificação , Klebsiella/enzimologia , Klebsiella/isolamento & purificação , Metais Pesados/metabolismo , Metais Pesados/toxicidade , Testes de Sensibilidade Microbiana , Fixação de Nitrogênio , Peptídeo Hidrolases/análise , Fosfatos/metabolismo , Raízes de Plantas/microbiologia , Rizosfera , Solo/química , Microbiologia do Solo , Poluentes do Solo/metabolismo , Estresse Psicológico
10.
Ecotoxicol Environ Saf ; 156: 183-196, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-29550436

RESUMO

Bacteria-mediated plant growth promotion and bioremediation of heavy metal containing soil is a widely accepted eco-friendly method. The present study is aimed to screen out cadmium resistant bacterial strain from metal contaminated rice rhizosphere and evaluate its effects on the growth of rice seedlings under cadmium stress. Among four different isolates (designated as S1, S2, S3 and S5), the S2 isolate was screened on the basis of different PGP traits and multi heavy metal resistance (minimum inhibitory concentration for cadmium, lead and arsenic were 3500, 2500 and 1050 µg/ml respectively). The selected S2 strain has ability to produce ACC deaminase (236.11 ng α-keto-butyrate/mg protein/h), IAA (726 µg/ml), solubilize phosphate (73.56 ppm) and fix nitrogen (4.4 µg of nitrogen fixed/h/mg protein). The selected strain was identified as Enterobacter sp. on the basis of phenotypic characterization, MALDI-TOF MS analysis of ribosomal proteins, FAME analysis and 16 S rDNA sequence homology. The high cadmium removal efficiency (> 95%) of this strain from the growth medium was measured by Atomic Absorption Spectrophotometer and it was due to intracellular cadmium accumulation evidenced by SEM-EDX-TEM-EDX study. SEM analysis also revealed no distortion of surface morphology of this strain even grown in the presence of high cadmium concentration (3000 µg/ml). Inoculation of this strain with rice seedlings significantly enhanced various morphological, biochemical characters of seedling growth compared with un-inoculated seedlings under Cd stress. The strain also exhibited alleviation of cadmium-induced oxidative stress, reduction of stress ethylene and decreased the accumulation of cadmium in seedlings as well that conferred cadmium tolerance to the plant. Thus the S2 strain could be considered as a potent heavy metal resistant PGPR applicable in heavy metal contaminated agricultural soil for bioremediation and plant growth promotion as well. MAIN FINDING: A cadmium resistant plant growth promoting Enterobacter sp. was isolated that accumulated cadmium evidenced by SEM-TEM-EDX study. It reduced Cd uptake and enhanced growth in rice seedlings.


Assuntos
Cádmio/metabolismo , Enterobacter/metabolismo , Oryza/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Carbono-Carbono Liases/metabolismo , Enterobacter/isolamento & purificação , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Rizosfera , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/microbiologia , Microbiologia do Solo
11.
Res Microbiol ; 169(1): 20-32, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28893659

RESUMO

Agricultural productivity is proven to be hampered by the synthesis of reactive oxygen species (ROS) and production of stress-induced ethylene under salinity stress. One-aminocyclopropane-1-carboxylic acid (ACC) is the direct precursor of ethylene synthesized by plants. Bacteria possessing ACC deaminase activity can use ACC as a nitrogen source preventing ethylene production. Several salt-tolerant bacterial strains displaying ACC deaminase activity were isolated from rice fields, and their plant growth-promoting (PGP) properties were determined. Among them, strain P23, identified as an Enterobacter sp. based on phenotypic characteristics, matrix-assisted laser desorption ionization-time of flight mass spectrometry data and the 16S rDNA sequence, was selected as the best-performing isolate for several PGP traits, including phosphate solubilization, IAA production, siderophore production, HCN production, etc. Enterobacter sp. P23 was shown to promote rice seedling growth under salt stress, and this effect was correlated with a decrease in antioxidant enzymes and stress-induced ethylene. Isolation of an acdS mutant strain enabled concluding that the reduction in stress-induced ethylene content after inoculation of strain P23 was linked to ACC deaminase activity.


Assuntos
Proteínas de Bactérias/metabolismo , Carbono-Carbono Liases/metabolismo , Enterobacter/enzimologia , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Plântula/crescimento & desenvolvimento , Cloreto de Sódio/metabolismo , Proteínas de Bactérias/genética , Carbono-Carbono Liases/genética , Enterobacter/classificação , Enterobacter/genética , Enterobacter/isolamento & purificação , Filogenia , Plântula/microbiologia , Cloreto de Sódio/análise
12.
J Genet Eng Biotechnol ; 15(2): 527-537, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30647696

RESUMO

Phosphorus is a primary macronutrient required for normal plant health, metabolism and survival. It is present in soil in compound insoluble form for which plant cannot uptake it directly from the soil. Some phosphate solubilizing bacteria possess some important enzymes for phosphate solubilization as well as mineralization. Alkaline (or basic) phosphatase (EC 3.1.3.1) is a type of zinc containing dimeric hydrolase enzyme responsible for removing the phosphate groups from various kinds of molecules including nucleotides, proteins, and alkaloids. Unlike acid phosphatases alkaline phosphatases are most effective in an alkaline environment. Alkaline phosphatases (ALPs) are of immense importance in various agricultural industries including dairy industries for testing successful pasteurization process. In this present study, Pseudomonas aeruginosa phosphatase was selected for a detailed computational investigation to exploit its physicochemical characteristics, structural properties including 3D model, model quality analysis, phylogenetic assessment and functional analysis using a number of available standard bioinformatics tools. The protein having average molecular weight about 51 kDa, was found thermostable and alkaline in nature belonging to metalloenzyme superfamily. Specifically, the thermostable behavior of the protein is suitable for the dairy industry. Moreover, this theoretical overview will help researchers to get an idea about the predicted protein structure and it may also help to design genetically engineered phosphate solubilizing bacteria by designing specific primers.

13.
J Microbiol ; 51(1): 11-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23456706

RESUMO

The present study demonstrates the metal toxicity ameliorating and growth promoting abilities of three different bacterial isolates when applied to rice as host plant. The three bacterial strains included a cadmium resistant Ochrobactrum sp., a lead resistant Bacillus sp. and an arsenic resistant Bacillus sp. designated as CdSP9, PbSP6, and AsSP9, respectively. When these isolates were used as inocula applied to metal-treated rice plants of variety Satabdi, the germination percentage, relative root elongation (RRE), amylase and protease activities were increased. The toxic effect of metal was reduced in presence of these bacteria. The overall biomass and root/shoot ratio were also enhanced by bacterial inoculation. Hydroponic studies showed that the superoxide dismutase (SOD) activity and malondialdehyde (MDA) level, which had been increased in the presence of metal stress in rice roots, were lowered by the bacterial inoculation. In addition, all three strains were 1-aminocyclopropane-1-carboxylate (ACC) deaminase and catalase positive, whereas siderophore producing ability was lacking in PbSP6. However, both PbSP6 and AsSP9 were protease positive and could hydrolyse starch. The data indicate that these bacteria have promise for bioremediation as well as for plant growth promotion.


Assuntos
Bacillus/metabolismo , Biodegradação Ambiental , Farmacorresistência Bacteriana , Metais Pesados/metabolismo , Ochrobactrum/metabolismo , Oryza/crescimento & desenvolvimento , Amilases/metabolismo , Bacillus/efeitos dos fármacos , Biomassa , DNA Bacteriano/química , DNA Bacteriano/genética , Germinação/efeitos dos fármacos , Metais Pesados/toxicidade , Dados de Sequência Molecular , Ochrobactrum/efeitos dos fármacos , Oryza/efeitos dos fármacos , Oryza/microbiologia , Oryza/fisiologia , Peptídeo Hidrolases/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...